LC 2150A Series \& LSC 1000P Series Active (Amplified - Zero Loss) L-band Combiners Passive Broadband Splitter/Combiners

LC12 2150A 12-way Active L-band Combiner

LC24 2150A 24-way Active L-band Combiner

LSC04 1000P 4-way Passive Broadband Splitter/Combiner

LSC32 1000P 32-way Passive Broadband Splitter/Combiner

General Description:

The LC 2150A Series commercial quality active L-band combiners meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary microstrip and SMT technology. These unity gain combiners operate over the Satellite L-band ($950-2150 \mathrm{MHz}$) frequency range and enable the combining of RF signals with repeatable performance over the entire frequency range and across all I/O ports.

The LSC 1000P Series are commercial quality passive broadband RF splitters / combiners that meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary microstrip and SMT technology. They operate over the $5-1000 \mathrm{MHz}$ frequency range and enable the splitting or combining of RF signals with repeatable performance over the entire frequency range and across all I/O ports. The LSC 1000P Series are commercial quality passive broadband RF splitters / combiners that meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary microstrip and SMT technology. They operate over the $5-1000 \mathrm{MHz}$ frequency range and enable the splitting or combining of RF signals with repeatable performance over the entire frequency range and across all I / O ports.

LC 2150A Series

MODEL	LC12 2150A	LC24 2150A
Frequency:	$950-2150 \mathrm{MHz}$	$950-2150 \mathrm{MHz}$
Impedance:	75Ω	75Ω
P1dB:	-2 dBm (each input)	-5 dBm each input
Insertion Loss:	$0 \pm 2 \mathrm{~dB}$	$0 \pm 2 \mathrm{~dB}$
Frequency Response:	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
Isolation:	18 dB	18 dB
Input Return Loss:	12 dB	12 dB
Output Return Loss:	12 dB	12 dB
Noise Figure:	19 dB	27 dB
RF Connectors:	Type "F", 75Ω	Type "F", 75Ω
Power Requirements:	18-24 VDC via 2-pin quick connect barrier strip	18-24 VDC via 2-pin quick connect barrier strip
Power Consumption:	6 W	13 W
Mechanical:	1 RU (1.75"H x 19"W x 6.5"D)	2 RU (3.5 " $\mathrm{H} \times 19 \mathrm{~W} \mathrm{~W} \times 14 \mathrm{D}$)

LSC 1000P Series

MODEL	LSC04 1000P	LSC08 1000P	LSC16 1000P	LSC32 1000P	LSC48 1000P	LSC64 1000P
Frequency	$5-1000 \mathrm{MHz}$					
Impedance	75Ω					
Insertion Loss	$7.5 \pm 1 \mathrm{~dB}$	$11.5 \pm 2 \mathrm{~dB}$	$15 \pm 2 \mathrm{~dB}$	$18 \pm 1 \mathrm{~dB}$	$-21 \mathrm{~dB} \pm 2 \mathrm{~dB}$	22 dB
Frequency Response	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$				
Isolation	16 dB					
Input Return Loss	14 dB	12 dB	12 dB	12 dB	13 dB	12 dB
RF Connectors	Type "F", 75Ω (BNC optional)					
Mechanical	$\begin{aligned} & 1 \mathrm{RU}(1.75 " \mathrm{H} \times 19 " \mathrm{~W} \mathrm{x} \\ & 6.5 " \mathrm{D}) \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{RU}(1.75 " \mathrm{H} \times 19 " \mathrm{~W} x \\ & 6.5 " \mathrm{D}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{RU}(1.75 " \mathrm{H} \times 19 " \mathrm{~W} \mathrm{x} \\ & 6.5 " \mathrm{D}) \end{aligned}$	$\begin{aligned} & 1 \mathrm{RU}(1.75 " \mathrm{H} \times 19 " \mathrm{~W} \mathrm{x} \\ & 6.5 " \mathrm{D}) \end{aligned}$	$\begin{aligned} & 3 \mathrm{RU}\left(5.25^{\prime} \mathrm{H} \times 19 " \mathrm{~W}\right. \\ & \mathrm{x} 20 \times \mathrm{D}) \end{aligned}$	$\begin{aligned} & 3 \mathrm{RU}\left(5.25^{\prime \prime} \mathrm{H} \times 19 " \mathrm{~W}\right. \\ & \times 20 " \mathrm{D}) \end{aligned}$

